
Subscriber access provided by American Chemical Society

Journal of the American Chemical Society is published by the American Chemical
Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Communication

Long-Range Stereo-Relay:  Relative and Absolute Configuration of
1,n-Glycols from Circular Dichroism of Liposomal Porphyrin Esters

John B. MacMillan, and Tadeusz F. Molinski
J. Am. Chem. Soc., 2004, 126 (32), 9944-9945• DOI: 10.1021/ja047741a • Publication Date (Web): 24 July 2004

Downloaded from http://pubs.acs.org on April 1, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Links to the 1 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/ja047741a


Long-Range Stereo-Relay: Relative and Absolute Configuration of
1,n-Glycols from Circular Dichroism of Liposomal Porphyrin Esters

John B. MacMillan and Tadeusz F. Molinski*

Department of Chemistry, One Shields AVenue, UniVersity of California, DaVis, California 95616

Received April 19, 2004; E-mail: tfmolinski@ucdavis.edu

Long-chain natural product lipids, bearing multiple hydroxyl
substituents (e.g. caylobolide A,1, from the cyanobacterium
Lyngbya majuscula)1 are often encountered in natural products
polyketides and glycolipids and exemplify a particularly difficult
problem in stereochemical determinationshow to relate the relative
configurations of two or more isolated stereogenic centers.

Polyketides may contain segments that embody 1,3-, 1,5-, or even
1,7-glycols. Successful approaches to solving 1,2- and 1,3-glycol
configurations2 include13C NMR analysis of the corresponding 1,3-
glycol acetonides,2a exciton coupling CD (ECCD) of dibenzoates
(or other aryl carboxylates) of 1,2- and 1,3-glycols,2c,d NMR-based
J-based analysis of1H-1H and1H-13C coupling constants,2e and
the proposed “universal NMR database”2f-h that addresses stereo-
chemistry through least-difference analysis of13C NMR chemical
shifts (∆δ). The latter methods have powerful advantages but rely
upon adequate NMR signal dispersion and reliable chemical shift
assignments. Within acyclic chains or macrocylic polyketides, OH
groups separated by four or more C-C bonds are effectively
“insulated” from each other as stereogenic elements and do not
convey configurational information from their NMR or CD spectral
properties. For example, unlike 1,2-dibenzoates,3 the CD spectra
of acyclic 1,5-glycol diarylcarboxylate esters in isotropic solution
show only baseline signal.

A solution to the problem resides in pre-alignment of the long
chains by imposing partial ordering within lipid bilayers (Figure
1) to allow nonaveraged orientations of the chromophore charge-
transfer electronic dipole moments. We describe herein long-range
transmission of stereochemical information within 1,n-glycol lipids
(wheren ) 5,7, and 9) that gives relativeandabsolute configura-
tions of glycol molecules from interpretation of ECCD of their
derived porphyrin carboxylate diesters within submicrometer lip-
osomes.

A model study served to demonstrate the proof of principle.C2

symmetric enantiomeric glycols, (R,R)-2 and (S,S)-3 (>99% ee),
were prepared from (R)-1,2-epoxypentane (R)-4 and (S)-4, respec-
tively, through double C2-alkylation of 1,3-dithiane (t-BuLi),
followed by removal of the dithiane (Raney Ni) (see Supporting
Information). Themeso-isomer,5, was separated from the mixture
obtained by double addition ofn-propylmagnesium bromide to
pentane-1,5-dinitrile followed by reduction of the resultant 4,8-
diketone.4

Three arylcarboxylate chromophores, commonly used in con-
figurational analysis by ECCD, were chosen for initial examination
(Figure 2, X) OH) 2-naphthoic acid (a, λmax 234 nm,ε 58000),
and two red-shifted chromophores, 7-(diethylamino)coumarin-3-
carboxylic acid (b, λ 540 nm, ε 80000)5 and 4-(10,15,20-
triphenylporphyrin-5-yl)-benzoic acid (TPP,c, λmax 418 nm, ε

350000).6b Stereoisomers,2, 3, and5 were acylated with either the
free carboxylic acida-c (5 equiv, glycol, DCC, DMAP, CH2Cl2)
or the correspondingN-acylimidazole (glycol, DBU, CH3CN) to
obtain the diesters2a-c, 3c, and5cwhich were purified by HPLC.

Liposomal glycol bis-TPP esters were formulated according to a
procedure developed for the purpose of this work.7 Transmission
electron microscopy (TEM) of the product (Figure 3) revealed
highly uniform, unilamellar liposomes of narrow size distribution
(φ ) 26 ( 5.1 nm).8

Measurement of the CD of (R,R)-2a-c in MeOH or (R,R)-2a-b
in liposomes gave only baseline spectra; however, the CD spectrum
of (R,R)-2c in liposomes (Figure 4a) showed a strong positive
bisignate signal due to exciton coupling [λmax 430 nm (∆ε +27),

Figure 1. Ordering of long-chain bis-arylcarboxylate esters of 1,5-glycols
in liposomes. (a) Sign of bisignate CD of 1,5-glycol arylcarboxylate
esters:positiVe for 1,5-(R,R), (b) negatiVe for 1,5-(S,S).

Figure 2. Model glycols, esters, and chromophores for ECCD.

Figure 3. TEM image of liposomes containing (R,R)-2c. Scale bar) 200
nm (mean liposome diameterφ ) 26 ( 5.1 nm).8
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413, (-25),A value3c ) max- min ) 52]. The enantiomer, (S,S)-
3c, gave a bisignate CD spectrum of opposite sign and magnitude
[λ 413 nm (∆ε -34); 429 nm,∆ε +31, A ) 65) while the CD
spectrum ofmeso-5c ester showed only baseline signal.

The signs of the bisignate CD spectra of liposomal TPP glycol
diesters (R,R)-5c and (S,S)-5c correlate with the helicity predicted
from consideration of the extended conformation of the lipid chain
(Figure 1a,b)9 and the well-known dependence of the signs of
bisignate CD spectra with the absolute helicity of the electric
transition dipole moments of coupled chromophores.3c The ECCD
of (R,R)-5c showed a nonlinear concentration dependence abovec
) 10 µM; optimal concentration appears to bee1 µM. As has
been noted by Nakanishi and co-workers,6a,bTPP diol esters provide
very high extinctions and good∆ε/ε ratios which, in the present
case, leads to excellent sensitivity (limit of detection∼40 pmol).

The distance dependence of liposomal ECCD in TPP diesters
of acyclic 1,n-glycols was briefly examined. Diastereomeric glycols
6 (n ) 7) and7 (n ) 9) have the two OH groups disposedanti-
(“pseudo-C2” symmetric), while in8 (n ) 9) they aresyn- (“pseudo-
meso”). The CD spectra of (R,R)-6c and7c, (Figure 3b) exhibited
strong positive bisignate curves13 with A values (A ) 51 and 27,
respectively) that diminish roughly linearly withn and the
interatomic distance between the ester oxygens (∼10 Å for n ) 9,
Supporting Information). Again, the pseudo-meso(8c) showed only
baseline signal. Assuming linearity beyondn ) 9, extrapolation of
the A versusn plot suggests that the limiting distance for ECCD
detection should occur atn ) 13 (∼15 Å, Chem3D model).

The present work demonstratestransmission of stereochemical
information across extraordinary atomic distances (8 C-C bonds)
in liposomal acylic diol esters. This method will find use in critical
stereochemical determinations of hydroxylated long-chain natural
product polyketides.
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Figure 4. CD spectra of TPP glycol esters in DPC liposomes (2 mg/mL,
1,2-distearoyl-sn-glycero-3-phosphocholine). (a) (R,R)-2c, (b) (S,S)-3c, (c)
mesoester5c (c ) 1 × 10-6 M), (d) (R,R)-6c, (e) (R,R)-7c, and (f) pseudo-
meso(S,R)-8c (c ) 6.5 × 10-7 M).
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